

Two Categories of SCMs

w.CTLGroup.com

- Pozzolanic a siliceous or alumnino-siliceous material, chemically reacts at ordinary temperatures with <u>calcium hydroxide</u> released by hydration products of portland cement to form cementing properties.
 - Does <u>NOT</u> in itself produce hydration products
- <u>Hydraulic</u> a material that <u>reacts</u> chemically with <u>water</u> to form compounds that have <u>cementing</u> properties
 - · Forms hydration products in itself e.g. portland cement

Manufacturing

- Byproduct of iron and steel manufacturing process
- Materials fed into furnace:
 - coke, natural gas, oxygen and pulverised coal and also limestone as a fluxing agent
- Two Products:
 - Molten iron metal
 - Molten blast furnance slag

Slag Run-off from an Open Hearth Furnace

CTL)GROUP

www.CTLGroup.com

Slag Cement					
 Glassy granular material formed when molten blast-furnace slag is rapidly chilled, as by immersion in water Non-metallic product, consisting of silicates and aluminosilicates of calcium and other bases 					
	Component				
	CaO	30-50			
	SiO ₂	28-38			
	Al_2O_3	8-24			
www.CTLGroup.com	MgO	1-18			

Classification					
Slag Activity Index, % = (SP / P) X 100					
 SP = Average compressive strength of slag-cement mortar cubes, MPa P = Average compressive strength of cement mortar cubes, MPa 					
	Average of Last Five Consecutive Samples				
Slag Activity Index					
28-Day Index, min.%					
Grade 80 75 70					
Grade 100	ade 100 95 90				
Grade 120 115 120					
ww.CTLGroup.com					

	Item
Fineness:	
Amount retained when wet screened on a 45-μm Sieve, max. %	20
Specific surface by air permeability, Test Methods C204 shall be determined and reported although no limits are requried.	
Air Content of Slag Mortar, max. %	12

ypical Dosage	
Application	Dosage (% by wt.)
Exterior Flatwork	≤ 35%
General Usage	35 to 50%
Mass Concrete	60 to 80%
Sulfate Resistance	
ASTM C150 – Type II Equivalent	≥ 35%
ASTM C150 – Type V Equivalent	≥ 50%
Marine Exposure	> 50% < 80%

Slag Benefits – Water Demand

- Reduces
 Water
 Demand
- Improved
 Pumpability

vw.CTLGroup.com

<section-header><image><image><image><image><list-item><list-item><list-item><list-item>

Effects of SCMs on fresh concrete				
Reduced No/Little Effect	Fly ash	Slag	Silica fume	Nat. Pozzolans
Water Requirements	↓	↓		
Workability		1		1
Bleeding and Segregation	↓	+		
Air Content		+		
Heat of Hydration			+	
Setting Time	1	1		
Finishability		1	+	
Pumpability			1	
Plastic Shrinkage Cracking				

<text><image><list-item><list-item>

Effects of SCMs on hardened concrete				
Reduced No/Little Effect	Fly ash	Slag	Silica fume	Nat. Pozzolans
Strength Gain	+	+	1	+
Abrasion Resistance				
Freeze-Thaw and Deicer-Scaling Resistance		-		
Drying Shrinkage and Creep				
Permeability				
Alkali-Silica Reactivity				
Chemical Resistance	1	1	1	1
Carbonation				
Concrete Color 🔶 🔶 🔶			•	

What is Mass Concrete?

Mass Concrete

w.CTLGroup.com

From ACI 207, Mass Concrete is:

"any volume of concrete with dimensions large enough to require that measures be taken to cope with generation of heat from hydration of the cement and attendant volume change, to minimize cracking"

Thick: Dams, mat foundations, bridge substructure, radiation shielding, etc.

Thinner: High performance concrete (HPC), selfconsolidating concrete (SCC), grout, patching material, etc.

Equivalent cement content

- ▶ 1 kg/m³ of cement = 1 kg/m³ equiv. cement
- 1 kg/m³ of class F ash = 0.5 kg/m³ equiv. cement
- 1 kg/m³ of class C ash = 0.8 kg/m³ equiv. cement
- ▶ 1 kg/m³ of Slag (50%) = 0.9 kg/m³ equiv. cement
- ▶ 1 kg/m³ of Slag (75%) = 0.8 kg/m³ equiv. cement
- Temperature rise in concrete

w.CTLGroup.com

- 0.15°C per 1 kg/m³ equiv. cement
- 0.16°F per 1 lb/yd³ equiv. cement

Delayed Ettringite Formation (DEF)

 <u>Rare</u> form of <u>sulfate attack</u> by which hardened concrete is damaged by <u>internal expansion</u> caused by the <u>late</u> formation of ettringite in concretes cured at temperatures in <u>excess of</u> <u>158°F</u>

Types of Structures

- Mass concrete
 - Bridge columns, foundations, etc.
- Precast Concrete
 - · Columns, beams, etc.

Maximum Temperature Limit					
 Specifications Limit 70°C = 158°F(or 160°F) Modern Specifications: 					
	Specificaion	Chapter	Requirement		
	ACI 301	Mass Concrete	158°F		
		Precast	153 + 5°F		
	TxDOT	Mass Concrete	160°F		
	VDOT	Mass Concrete	(50-75% Slag cement) 170°F		
		Mass concrete	(25-40% Class F Fly Ash) 160°F		
	FDOT	Mass Concrete	SCMs 180°F		
www	.CTLGroup.com		CTLGROUP		

Pocahontas Parkway Bridge

- ▶ I-895 in Virginia
- ▶ 672 ft Clear Span
- 145 ft High
- 90,000 cu yd
- ▶ 75% Slag

w.CTLGroup.com

- Massive Pours up to 16 ft thick
- Extensive CTL Involvement

CTLGROUP

Pocahontas: Overview and Scope

- Design-Build Project
- CTL Helped Speed Construction and Decrease Cost of Mass Concrete
 - Specifications
 - Thermal Modeling
 - Temperature Monitoring
 - Maturity

Pocahontas: Concrete Mix Designs

- Needed High Strength and Low Heat
- Fly Ash Mixes Considered but Dismissed
- ▶ 75% Slag 25% Type II
- Typically 564 pcy

w.CTLGroup.com

5000 psi at 28 days

Wilson Bridge: CTL Involvement

- Help Contractor with Bid
- Planned on Using 25% Class F Fly Ash
- Switched to 75% Slag for Reduced Heat (prior to Construction)
- Thermal Modeling

w.CTLGroup.com

Temperature Monitoring

Wilson Bridge: Concrete

- 56-day Design Strength of 4000 and 6500 psi
- 165 pcy of Cement and 494 pcy of Slag
- 5100 psi at 7 days
 7900 psi at 28 days
 8400 psi at 56 days

www.CTLGroup.com

 Low Permeability (<800 Coulombs)

Boston "Big Dig": CTL Involvement

- Thermal Modeling to Identify Initial Temperatures to meet Specs.
- No Involvement after Switch to Slag

w.CTLGroup.com

